Form and location tolerances according to DIN ISO 1101

Form and location tolerances are only required when the defined dimensional tolerances cannot on their own ensure the function. This primarily applies to coaxiality, symmetry and running deviations.

Straightness

The actual axis of the cylinder must lie
 within a cylinder of diameter $t=0.05 \mathrm{~mm}$.
In the case of tolerancing an axis or central plane, the indicating arrow or the datum triangle lies on an extension of the dimensional line.

\square Flatness

The actual surface must lie between
two parallel planes spaced $\mathrm{t}=0.02 \mathrm{~mm}$ apart.

Roundness

(circularity)

The actual circumference of each cross-section
must lie between two concentric circles spaced $\mathrm{t}=0.08 \mathrm{~mm}$ apart.

C/ Cylindricity

The actual surface of the cylinder must
lie between two coaxial cylinders which have a spacing of $t=0.06 \mathrm{~mm}$.
The cylindricity is the sum of tolerances for roundness and parallelism.

Profile of any line

The actual line must lie between two
envelope lines on circles having a diameter $t=0.1 \mathrm{~mm}$.

Profile of any surface

The actual surface must lie between two
envelope surfaces on spheres having a diameter $\mathrm{t}=0.07 \mathrm{~mm}$.

Parallelism

The actual surface must lie between two planes
which are parallel to the reference surface and are spaced $t=0.09 \mathrm{~mm}$ apart.

two planes which are parallel and perpendicular
to the reference surface A and are $t=0.2 \mathrm{~mm}$ apart.

two planes which are parallel and are inclined in relation to the reference surface A at the geometrically ideal angle of 45°, and are $t=0.8 \mathrm{~mm}$ apart.

$t=0.01 \mathrm{~mm}$, the axis of which is located at the geometrically ideal location.
Coaxiality
Concentricity

The actual axis of the large
diameter must lie within a cylinder which is coaxial with the reference axis A and has a diameter of $\mathrm{t}=0.03 \mathrm{~mm}$.

Symmetry

The actual central plane of the groove must lie between two parallel

planes spaced $t=0.7 \mathrm{~mm}$ apart, which are arranged symmetrically in relation to the central plane of the reference surface A .

True running

When rotated about the reference axis A,
the true-running deviation (run-out) must not exceed $t=0.02 \mathrm{~mm}$.
This tolerance is the sum of roundness and coaxiality tolerances.
Axial running

When rotated about the reference
 axis A , the axial running deviation
(axial run-out) must not exceed the tolerance $t=0.05 \mathrm{~mm}$.
4
Total run-out

Given multiple rotation about the

reference axis and axial displacement
between workpiece and measuring instrument, all the measured points must lie within the overall run-out tolerance of $t=0.01 \mathrm{~mm}$.

Reliable are always the newest publications of DIN ISO-Standards.

